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We show that in the ground states of the infinite-volume limits of both the spin- 
1/2 anisotropic antiferromagnetic Heisenberg model (in dimensions d~> 2), and 
the ferromagnetic Ising model in a strong transverse field (in dimensions d~> 1 ) 
there is an interval in the spectrum above the mass gap which contains a 
continuous band of energy levels. We use the methods of Bricmont and Fr6hlich 
to develop our expansions, as well as a method of Kennedy and Tasaki to 
do the expansions in the quantum mechanical limit. Where the expansions 
converge, they are then shown to have spectral measures which have absolutely 
continuous parts on intervals above the mass gaps. 
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perturbative spectral analysis. 

1. I N T R O D U C T I O N  

In  this paper, we consider the problem of analyzing the spectrum of a 
q u a n t u m  mechanical  spin system in the inf ini te-volume limit. Unfor tunate ly ,  

this requires the study of an u n b o u n d e d  opera tor  in a setting where the 
operator  is no longer defined. While the Hami l t on i a n  is undefined in the 

infini te-volume limit, the states are well defined. We can define an infinite- 
volume the rmodynamic  state as a funct ional  ~o(. ) acting on a C*-algebra 

of operators k n o w n  as the quasilocal observables. The values of the func- 

t ional  are called the expectations of the observables in the state. The 
expectations of observables can also be defined in finite volumes, and  we 
take the limits of the finite-volume expectations to get their infini te-volume 
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values. A ground state is a functional co which has the following property 
for every quasilocal observable (9 in the algebra: 

c0((9.[/4, o] )  t> 0 (1) 

See refs. 2 and 3 for details. Typically, once we have an expression for the 
infinite-volume expectation at any temperature, we can find the expectation 
in the ground state by letting the temperature go to zero. 

We usually can study the time evolution of an expectation by using 
the time-dependent operator e"n(ge itH, where (9 is the observable and H 
is the Hamiltonian. Although H is not defined in the infinite-volume limit, 
for real values of t, the operator eit/~(ge ~,H is well defined. (3) To get some 
information about the spectrum in the ground state we could calculate the 
quantity co((9*e"H(ge-"H). However, for the expansions in our calculations 
to work we must calculate the above in purely imaginary t. Unfortunately 
in imaginary t the quantity has the disadvantage of not being defined for 
all temperatures. What makes the method work in this case is that the 
system is in the ground state, requiring the limit fl ~ oo (with /3 equal to 
the inverse temperature). When we evolve the observable in imaginary time 
we can use the usual approach to find an expectation, first rigorously done 
in ref. 6, of writing a quantum mechanical spin system as a classical spin 
system in one additional dimension. Nonetheless, the quantity co((9*e-m(ge 'H) 
can yield information about the spectrum. If the preceding quantity could 
be calculated for all observables in the algebra for all t, we could regain the 
complete spectrum. Unfortunately, that is not always possible. In this 
paper, however, we do perform this procedure for one observable and 
large t, and thus can obtain some information about the spectrum of H 
near the ground-state energy. 

The approach which we take to this problem for the two models 
described in this paper will be to write all of the quantities which we need 
in a finite volume and at finite fl, and then proceed to the infinite-volume, 
infinite-fl limits. The expansions we develop are based on the work done by 
Bricmont and Fr6hlich (4) on classical spin systems, except that in our case 
one of the dimensions is continuous. The two models which appear in the 
paper are the spin-l/2 anisotropic antiferromagnetic Heisenberg model in 
dimensions greater than or equal to two, and the ferromagnetic Ising 
model in a strong transverse field in dimensions greater than or equal to 
one. We will show that in the infinite-volume ground state of both of these 
models, the spectrum above the lowest energy level contains a continuous 
part and is separated from the lowest level by an energy gap. The existence 
of an energy gap has been shown previously. (9"13' 12,1,8) In a finite volume, 
the energy level above the lowest level is N-fold degenerate in both unper- 
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turbed models. What we have shown is that under the perturbation, in the 
infinite-volume limit, these levels spread into a continuous band of energy 
levels. 

The only observable which is used in our calculations is a~. For the 
case of the antiferromagnetic Heisenberg model, in the path-space formula- 
tion of the quantity discussed in the second paragraph above, a o x "flips" the 
spin at the origin at times 0 and t, and we find that the excitations which 
we can control consist of deviations of a simple "tube" of plaquettes which 
connects the origin between "times" 0 and t (included in this group of 
excitations are all sites not in the ground state which exist apart from the 
"tube"). The energy penalty to excite this tube, i.e., to make it include at 
any single time n sites with n > 1, will roughly speaking scale like n ( d -  l)/d. 

This energy penalty is enough for us to control these lowest energy excita- 
tions in our calculation. It also shows why the calculation which we present 
fails for d = 1; that is, there is no energy penalty due to increasing "surface" 
as the volume n of the excitation grows. In the case of the Ising model in 
a strong transverse field, the path-space formulation does not result in 
plaquettes surrounding sites, but rather in paths which simply connect sites 
along the "bonds." Excitations are again defined in a similar manner, but 
here every path segment carries an energy penalty. Thus, even in one 
dimension, there is an increasing energy penalty for each excitation as its 
volume increases. 

Regarding our proofs of the existence o f  continuous spectrum, various 
exactly solvable models have previously been shown to have continuous 
spectrum, m) but only in one dimension. Both of our results, though pertur- 
bative in nature, are valid for dimensions greater than (and, in one case, 
equal to) one. We cannot rule out bound states within the continuum, 
because we can only do the calculations with the single observable a~; 
and to get all of the spectrum would require doing the calculations 
with all observables for all values of t. We comment on the effect which 
other observables might have on the spectrum, as well as the difficulties 
encountered in getting a result with other observables, in the last section of 
the paper. 

2. M A I N  R E S U L T S  

2.1. S t a t e m e n t  of  the  T h e o r e m  

In this paper we primarily consider the anisotropic antiferromagnetic 
spin-l/2 Heisenberg model. We define the model by giving the Hamiltonian 
of our system as well as the Hilbert space on which the Hamiltonian acts. 
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The Hilbert space is the tensor product space of IAI copies of C 2, and the 
Hamiltonian acting on this Hilbert space is 

e 1 
H A = ~ ~ (a~af + a far)  +-~ (a~a; + 1) (2) 

<ij> 

where the sum is over nearest neighbor pairs of sites ( 0 )  on the lattice 
A with periodic boundary conditions, and the a's are the usual Pauli 
spin operators. The lattice A will be a subset of Z d. To investigate the 
structure of the spectrum we will be calculating the quantity 
Tr(a~e-mAa~e -(~-t)nA) as a function of t. As a preliminary step we apply 
a unitary transformation which rotates every spin on the "odd" sublattice 
of A about the y axis by rc radians. After this transformation (2) becomes 

HA=- -~  e(a+aT +aTaf)-t -''yta,ayz z_ 1) (3) 
@ )  

where a /- = (a 7 + iaY)/2 and a 7 = (a 7 - it~Y)12. The operator a/+ acting on 
a "down" spin changes it into an "up" spin, while an "up" spin is in the 
operator's kernel, a 7 has a similar action except with "down" and "up" 
interchanged. 

We will also consider the Ising model in a strong transverse field. The 
Hamiltonian for this model is 

Ha = - g  E aTa} + 1 ~ , ( a x + l )  (4) 
<U> # 

In this model, too, a preliminary unitary transformation will make the 
model more amenable to the following expansions. The transformation in 
this case consists of a rotation of every site about the y axis by =/2 radians. 
The result of this transformation on (4) is 

HA = -�89 E s (5) 
i ( / j )  

In the following we will do the calculations for the anisotropic Heisenberg 
model in detail, and will merely indicate at which points a similar calcula- 
tion for the strong-field Ising model differs significantly from the one given. 

We now state the theorem which we will prove in this paper. 

T h e o r e m  1. For Hamiltonians given in (2) (in dimensions d~>2) 
and (4) (in dimensions d >~ 1), define the following function in finite volume 
A and at finite inverse temperature fl: 

f ~(t) = Tr(a~e-t"Aa~e-(n- ')uA) 
Tr(e_PHA) (6) 
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Then there is an eo > 0 such that when e < eo, the function f~(t) converges 
to a function f(t) as fl ~ oc and subsequently [At--* oo. In addition, there 
exists a unique Baire measure such that 

fo f(t) = exp( - tE) dl~(E) (7) 

and there exist mo > 0 which depends analytically on e, and ml which is 
greater than too, such that d/~ has no support between 0 and mo, yet has 
support throughout the entire interval [m0, ml). On this interval d# is 
absolutely continuous with respect to Lebesgue measure. The width of the 
interval is asymptotically O(e) as e--* 0. 

2.2. The First Expansion 

Using a slight variant of the Trotter product formula, we begin the 
first expansion of Tr(a~e m~a)ge-(e-t)HA) for (3): 

Tr(o-; exp(--tHA) a:g exp[ --(fl -- t) HA]) 

({ ) = lim Tr a~ exp ~ ( a ~ o - } - l )  

]t 
1 

• E 
(ij) 

-')) (8) 

We choose the  usual complete set of basis vectors {[~)} ,  where 
az I ~ ) = ( r i l g Q  with o'i= _+1 (if ai = +1, the spin at site i is "up"; if 
a i =  -1 ,  the spin at site i is "down") for each iEA. By inserting a sum over 
the set of basis vectors between each of the Nfl + 2 factors in the product, 
the right-hand side of (8) becomes 

~k 

x ( g~rl exp ~-~ (a ;a ;  - 1 ) 
T = 1 / N  "" 

•  N ~ (a~a++aiaj)][~T+l/N) 
<U) 
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,8 + 1/N 

ll 
T =  t + 2/N 

E ] • l + ~  ~ ( a + a f + a T a f ) I ~ T + ~ / N )  (9) 
(U) 

with I gtB + 2IN ~ de f I ~Or0 ) '  The exponential terms are diagonal in the basis, so 
we now have 

Z ~ 0 l  0"~ I ~ [ J 1 / N ) ~ J t + I / N I ( T  ~ I ~r/t+2/N) 
'/'k 

x 1] exp 
T =  1/N "" 

g 

(/)) 

x H exp ej (T) - 1 ) 
T = t + 2 / N  

8 
x ( eTI  1 + N  ~' (~176 + ~/-oj-)IgtT+l/N) 

(g) 
(10) 

where ai(k) is the value of the spin at site i at T=k.  
We will denote by ~ the time axis (=  {0, 1/N, .... fl + I/N}). Each term 

in the sum (10) has a geometrical interpretation in terms of plaquettes in 
A x ~. When we consider the unit cubes centered on the sites in a d-dimen- 
sional cubic (or rectangular) lattice, then we define the plaquettes to be the 
( d -  1)-dimensional faces of those unit cubes. We say that a particular pla- 
quette is dual to the bond in the lattice which is bisected by the plaquette. 
Consider the plaquettes dual to the bonds between two sites with opposite 
spins. Such plaquettes dual to bonds in A* (which is the set of bonds in the 
lattice A) will be called time plaquettes, while such plaquettes dual to bonds 
in the ~ direction will be called space plaquettes. For the strong-field Ising 
model the geometric interpretation is quite different. In this case the spins 
not in the ground state will appear to hop from site to site, and a term in 
the sum over configurations will be a collection of bonds in (A x~)*  
corresponding to the "paths" of the spins out of the ground state. Bonds 
parallel to the -~ axis will be called time bonds, and bonds in A* will be 
called space bonds. 

Each time plaquette will occur in (10) with a factor of exp( -1 /N) .  
The off-diagonal factors in (10) are given by 
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(Tkl  1+  N 

1 

g 

0 

E (Cr?G/ ~-(Ti~j)t~-'r 
<u) 

if Tk= Tk + l/N 

if ( Tkl a~+o'f I Tk+ 1/N) = 1 for a single (z]) EA* 

if (~k l  cr,:~r 7 I~k+l/N) =1 forasingle ( O ) ~ A *  

otherwise 

(11) 

Thus, the space plaquettes arising from the off-diagonal terms will occur in 
(10) in connected pairs (which we will call space rectangles) with factors of 
a/N. As usual, in each term in the sum every edge between plaquettes must 
have an even number of plaquettes touching it. We call any such connected 
set of plaquettes a contour. Thus we can associate to each contour o) a 
weight W(co) composed of a factor of e x p ( -  1/N) for every time plaquette 
in o~, and a factor of e/N for every space rectangle in co. The contours in 
the strong-field Ising model will be connected sets of bonds, and the 
weights of time and space bonds are also exp( - l /N) and e/N, respectively. 

In terms of contours and their weights, (10) is now a weighted sum 
over sets of contours in A x Z: 

Tr(G~e-'HAa;e-(~-')HA)= lim ~ W(O) (12) 
N ~ c 9  ~Q 

where ~2 is a sum over allowed unconnected sets of contours in A x Z, and 
W(g?) is the total weight of the contours in f2. The allowed sets of contours 
which occur in ~ are those for which (1) at most only one space rectangle 
exists at each T value, (2) there is a single space plaquette at the origin at 
both T =  0 and T= t + l/N, and (3) every closed path in A x ~ crosses an 
even number of plaquettes. An example contour set is shown in Fig. 1. The 
third constraint does not arise in the strong-field Ising model because there 
are no plaquettes in that model, which makes the Ising model somewhat 
easier to calculate. T h e  second constraint will be replaced in the Ising 
model by a requirement that there is a path which originates at the origin 
at T =  0 and ends at the origin at T= t + 1IN. 

Returning to the Heisenberg model, the first constraint on the sum 
can be dropped with the introduction of a correction vanishing as N 
increases. (7) The third constraint derives from the periodicity of A x Z in 
every direction, the periodicity in the space directions deriving from the 
boundary conditions, and the periodicity in the time direction deriving 
from the trace in (8). Given the periodicity, any closed path in A x Z must 

822/'72/1-2-26 
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Fig. 1. An example of a set of allowed contours (d= 2), including a portion of the contour 
which runs from (0, 0) to (0, t+ 1/N). 

cross an even number  of spin flips--hence the third constraint. We must 
also develop an expansion of Tr(e a/~A), but this expansion will be very 
similar to (12) except without the second constraint. 

The function we now need to investigate is 

f ~ ( t ) =  lim T r ( a ; e - m " a ; e  ~P-')"~) 
N--~ oo Tr(e ~-A) 

(13) 

To proceed we need to first show that expansions exist for both the 
numerator  and the denominator  o f f , ( t )  in the infinite-volume and zero- 
temperature limits. We will formulate our expansions in the infinite-N limit 
as done in ref. 8. In the N ~  ~ limit, Z =  [0,/~] with periodic boundary 
conditions. We will now consider the Z direction to be blocked, or divided 
up, into partitions of length r. In the blocked picture we introduce new 
types of contours which we name polymers .  The polymers will consist o f  
time plaquettes, and blocks centered at sites in A with length in the 
direction equal to z. Specifically a block is a cube in A x ~ of the following 
type: 

B ( i  1 ,..., id, m )  = [i  1 1 ~ , i l+ �89  x . . .  x E i d -  1 - ~ , i d + l ) [ m z , ( m + l ) z )  (14) 
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for (it,..., id) EA. {In the Ising model, the geometrical objects in the 
blocked picture will be time bonds whose lengths are multiples of z, and 
two-dimensional rectangles [i, i+  1)x [mr, (m + 1)r).} Let 5e(m) be the 
set of blocks in the blocked picture which intersect any space rectangle of 
co, and let Y-(~o) be the set of time plaquettes in the blocked picture for 
which the spins on opposite sides of the plaquette are never aligned 
(throughout the length of the plaquette). 

Time plaquettes and blocks in the blocked picture are considered con- 
nected if they touch anywhere. Fix a connected set 7 of plaquettes and 
blocks in the blocked picture. For any polymer co with 5e(oJ)u ~-(co)= 7, 
it is easy to see that 

{1 } 
[ I e x p  ~ [a,(T) a j ( T ) - l ]  ~<exp[-IJ(co}[~]  {15) 

T 

The weights for the blocks in 5 e can be bounded by use of a com- 
parison Hamiltonian. This method is developed in ref. 8, but we reproduce 
it here for completeness. If we let m be the number of space rectangles in 
co, then 

8 

T <il) 

1 
= [ I  06) 

T <0> 

We can bound m from below by t~((o)1. The comparison Hamiltonian witl 
be 

= (17) 
$ <#> 

If we let z' = min(z, -ln(~z)), then 

J W(o))l ~< e-~'H I ffs(~0)l (18) 

with IYV(o)) equal to the weight of the polymer under the comparison 
Hamiltonian. We will soon show that ~:.z(~o),~9-{o~)=v W(co) is bounded 
above by e ktyt, with k independent of e and ~. Therefore, given e, we can 
choose z such that e Vz ~< e < e-k/r, and then we have an exponentially 
decreasing bound 

1 7s~ t~:~{,o)~' ,o~=-~ W(co) ~ e  -~1~1 (19) 
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where t /= r ' - k .  Therefore by standard results on polymer expansions, all 
the desired sums are absolutely convergent3 5'1~ 

To prove the claimed bound on l~/(co), let I be a set of sites, and let 
H(I) be the projection onto the states which are in the ground state off 
of I. Also let 1(7)= {i:B(i, 0)e  T}, and Im(7) = {i:B(i, m--1)e T}. Next 
break up # a  into its components in each of the (blocked) 2 slices: 

1 A m 
H A = -  E 

T ( / j >  e / M ~ )  

The following bound holds because every term in the expansion of the 
right-hand side is positive, and every term on the left-hand side occurs in 
the expansion of the right: 

E l~(co) ~< Tr [H(I(7)) e x p ( _ # 1 )  exp(-#2a)  ... e x p ( -  #~/ ' )  ] 
o,:~(,o) ~, a~(o,) = 7 (20) 

It is easy to show that if A and B are both self-adjoint operators and A is 
also a positive operator, then 

Tr(AB) ~< IIBll Tr(A) (21) 

To use the above identity in the current context, we let A = H(I(7)) and 
B = e x p ( - # 1 ) . . ,  exp(-/I~A/'). We also define [IC(7)] to be the number of 
connected components off of 1(7). Then 

and 

Tr[H(I(7))]  = 2 Is(~)l + u%)3 

l l e x p ( - # 1 ) . . . e x p ( - ~ / ~ ) l l  ~<exp ( ~  II#~l[) 

(22) 

(23) 

Because [IC(7)] ~< 11(7)1 and I1#~11 ~ I/~(7)1, the claim is proved. 
Standard results in polymer expansion theory now let us conclude that 

there is an expansion for both numerator and denominator in Eq. (13) in 
the blocked picture. It is now appropriate to consider the effect of the 
periodicity of A x ~ on our expansions. Let us define a sheet as a polymer 
with at least one direction in A x ~ such that all closed paths in the given 
direction cross the polymer at least once. The weights of sheet polymers 
cannot simply be the sum of contour weights over all contours which have 
their support on the sheet, because of the global constraint imposed by 
periodic boundary conditions. We define U(.) and ~r(.) to be the weights 
of polymers without and with this constraint, respectively. We will show, 
however, that up to exponentially small corrections in the size of A x ~, we 
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can approximate U(-) by U(-). As usual, we partition a set of polymers F 
into its connected components 71,--.,7n. The results of the expansion 
(without the global constraint) yield 

~ [I U(?i)=exp[~r vC(71 ..... ?n) l-[ U(?i)] 
F:  u i i 

= exp ~b(F (24) 

where F: u is a sum over sets of unconnected polymers. The definition of 
the connected part of the "hard-core" potential vC( �9 ) is standard, and can 
be found in ref. 5. At present the most important feature of vc(?l,..., 7,) is 
that it vanishes unless Ui ?; is connected. A similar expression holds for the 
sum over sets of polymers with the global constraint. We can now show 
that the contribution of sheets to our expansions is exponentially small in 
the size of A x 2. (Note that in the Ising model we do not have to consider 
any sheets or their attendant complexities.) 

We must now bound the difference in the weights of polymers with 
and without the global constraint. This difference appears in the expansion 
in a term of the following form: 

The exponent of this expression in terms of U(7) is the following: 

Z 
F F 

= ~ vC(?l,...,7~)[~ D(?i)-l-I u(Ti)] (26) 
F i 

: E vC('I'""'n)[ITI i U(?i)--]-I U(?i)] ( 2 7 )  
F :  F c o n t a i n s  a sheet  i 

Because we already have a bound on U(. ) and g'(-), and every term in the 
sum has a sheet of size at least [diam(A x 2)]  u, standard results in polymer 
expansions allow us to conclude that there is some/~ >i 0 such that for large 
enough diam(A x 2), 

exp[~r ~ ( F ) - ~ r  ~b(F)] ~<O(exp(--~d)) (28) 

with ( %f diam(A x 2). 
Up to this point we have ignored the contour which includes the spin 

flip at the origin at T=  0 and T=  t. To take it into account, we factor out 
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the sum over this single contour (denoted by a subscript 0) in the 
numerator of (13). The sum over the rest of the contours will then have the 
restriction that no contour is connected to the contour Oo. In the blocked 
picture this restriction will still hold. The sum over the rest of the polymers 
will still have an expansion. Therefore, for large enough ~, (13) will become 

exp(Zr : r~70=~ ~b(F))[1 + O (ex p ( -# ~a ) ) ]  
f~(t) = Z U(7o) e x p [ ~ r  ~b(r)] [1 + O ( e x p ( - # ~ a ) ) ]  

70 (29) 

=~ U(7o)exp r/ Z -4(r)/1 " + O(exp( -#~a ) )  

~o Cr: r~  7o* ~ j 1 + O(exp( -- #~a)) 

2.3. The Second Expansion 

Our next step is to formulate a second expansion based on the previous 
expansion (29), following the method developed in ref. 4. We must consider 
the lowest energy polymers which enter into our first expansion. We will 
then find that the partition of polymers into lowest energy polymers and 
higher energy polymers can be characterized by the polymers' projections on 
the ~ axis. Based on this characterization, we can rewrite (29) as a sum over 
intervals on the ~ axis. We can make estimates to show that this new one- 
dimensional expansion also exists, and at that point we will be close to 
finishing the proof of Theorem 1. 

Consider the blocks and plaquettes in a polymer 7. Any component of 
a polymer which consists of only a tube of plaquettes surrounding a single 
site we will call a simple tube. Note that only 7o can include any simple 
tubes. Let H(7) be the projection of any polymer 7 onto the ~ axis. This 
projection will consist of a number of intervals of length ~. If for a fixed, 
single r interval X c  H(7) the s e t / /  I(X) c~ ? contains at least one block or 
a tube which is not simple, then we will say that X is in the set of excitation 
intervals of 7. Note that the projection of every polymer which is not 70 is 
in the set of excitation intervals. A typical excitation is shown in Fig. 2. In 
the Ising model, an interval X is in the set of excitation intervals if 
H - I ( x )  n 7 contains at least one rectangle or more than one time bond. 

We now would like to develop our expansion in terms of intervals on 
the Z axis. For  a fixed 70 we define for any connected set of ~ intervals X 

K(X, 70) = ~ - ~ ( r )  (30) 
F : F n ? o # ~  

H(r) = x 

where ~b(F) is the same function defined in (24). We can easily show that 
K(., 7o) is bounded by 

IK(X, 7o)[ <~eexp(-2dlXI ~l)170 ca l l  I(X)I (31) 
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Fig. 2. A typical excitation with simple tubes at both ends (d=2). 

where t/is given in (19). Because K(X, 70) is small, we will define k(X, 70) 
by 

exp K(X, 70) = 1 + k(X, 70) (32) 

Those elements of 7o which have their projections in the excitation intervals 
of 7o we call the excitations of 7o, and we denote the excitations of 7o by 
E(7o). In terms of these new definitions, (29) becomes (ignoring finite- 
volume corrections) 

f~(t) = ~  U(7o) YI [ i  +k(X, 70)] 
YO X 

= Z U(7o) 2 1-[ k(x,, 7o) 
YO X l ,..., X n i 

= 2  Z Z U(7o) [I k(X. 7o) (33) 
Y 70: H(E(y0)) = Y X I , . . . ,  Xn  i 

where the sum over X1 ..... Xn is over distinct v intervals which can overlap, 
and the sum over Y is over sets of disjoint v intervals. The excitation inter- 
val of 7o will consist of disjoint intervals Y1 ..... Y,. Those parts of 7o which 
are not excitations consist of simple tubes. Define the left (resp. right) side 
of an excitation interval to be end of the interval with the smaller (larger) 
coordinate on the ~ axis. An excitation of 70, or 70 c~ H- I (Yi )  (for a fixed 
i), can have (at most) a single simple tube entering it from the left and a 
single simple tube exiting it from the right. If the excitation contains (0, 0) 
[resp. (0, t)], then the excitation will not have a tube on the left (right); 
otherwise the excitation will have one simple tube on both the left and the 
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right. For the ith excitation, denote the A coordinates of the center of the 
simple tube on the left by r ; ,  and for the simple tube on the right, r +. 
Clearly r + = r~+ 1. If the first excitation interval includes 0, define r~ = 0, 
and if the last excitation interval includes t, define r + = 0. For each excita- 
tion interval define ri = r + - r T .  Because the tube begins and ends at 0 e A, 
we have the constraint 6(Z; ri)--- 1, where 

 ir, O ,34, 
6 r~ = otherwise 

Between excitations, the simple tubes have a weight of e x p [ -  2d(length)]. 
If we factor out the weight of simple tube from (0, 0) to (0, t), then we must 
put back in a factor of exp(2d [ Yc~ [0, t)]) for every excitation Y. Now (33) 
can be rewritten as 

f~(t)=exp(-2dt) ~ l~ exp(2dlY, c~[O,t)l) 
YI ..... Ym i 

x ~. ~ IH i U(H-l(Yi)~7o)]i~k(Xj, 7o)] (35) 
YO: f / ( E ( y o ) )  = U i  Yi Xi,..., Xn 

where the Yi are disjoint intervals, the Xi are distinct intervals [as in (33)]. 
When we describe the polymer 7o in terms of the rl we get the following 
equation: 

f~(t)=exp(-2dt) ~ ~ exp(2dlYic~ [0, t)l) 
YI,..., Ym i 

~ ( ~ / r , )  ~ U U(H-I(yi)()~o) 
r I ,-.., rm  ~0 : r i 

H( E(yo) ) = Ui Yi 

x ~ ~-I k(X:,yo) (36) 
Xl ,..., Xn j 

where the sum over yo:r means the sum over all ~o polymers which obey 
the rff restrictions. 

The union of all the intervals in the above equation can be broken up 
into disjoint intervals I1 ..... Ira. The weights of these intervals are now 

q/(I, r) = exp(2d I I~  [0, 01) ~ ~ I--[ k(X:, Yo) (37) 
vo x l , . . . ,  ~ j 



Spectrum of Spin- l /2  Models in Infinite-Volume Limit 395 

where the sums are over 7o and the X~ with H(E(7o))w (U~ Xi)=/ ,  the Xi 
distinct, 7o entering the excitation as a simple tube at 0, and exiting the 
excitation as a simple tube at (r, lit ). With this definition, the expansion 
becomes 

f~(t)=exp(-2dt) ~ ~ 6 (~. ri o ~ q/(Ii, ri) (38) 
I1 ,..., Im: r l , . . . ,  rm  
d i s j o i n t  

We next want to show that there is an expansion for the sum over/ 's  and 
r's (subject to the constraints) of the product of the weights Y/(/, r). To do 
this, we can show the appropriate bound on [~//(/,r)[. From (31) each 
factor of k(X, Yo) in (37) is no larger than exp( -2d  IX[ ~/) (times a term 
proportional to the size of the part of 7o whose projection lies in X). 
Because 70 extends at least across I n  E0, t) and also must traverse a 
distance of It[ in A, Y0 contributes a factor whose magnitude is bounded 
above by exp{-[2d[Ic~ [-0, t)[ + Jr[/2] 7}. In addition, there are small 
factors that are also present because there must be an excitation through- 
out [I]. Since every Xi is an excitation already, the space between the Xi in 
I must be "filled" by excitations of 7o. The excitations of 70 will add an 
additional 2 ( d -  1 ) [ I [ -  ~ i  IX~[ small factors. (Note that it is essential that 
d~> 2, or this estimate will not work. In the Ising model the estimates are 
somewhat simpler and will also work for d=  1). Therefore we have the 
bound 

Iq/(I, r)l ~< O(exp{ - [ [rl/2 + 2 ( d -  1) tlI] r/}) (39) 

We use the following identity to transform the term fi(Z~ ri): 

0 (40) 

After the above transformation, we define the weights in Fourier space by 

qT(I, k) = ~ exp(ik, r) 0//(1, r) (41) 
r 

From (39) we get the bound on @(L k) 

I~(I, k)l ~ ~ c e x p {  - Elrl/2 + 2 (d-  1)III 3 7} 
17 

~< O ( e x p [ - 2 ( d -  1) [II q]) (42) 
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In terms of our new definitions, after the limits fi --* oo and IAI --' oe (which 
limits exist by standard polymer expansion results(5)), (38) becomes 

f(t) = exp( -2d t )  

We define 

z~(t, k) d~ 

dkl. . ,  dka ~ ~#(Ii, k) (43) 
- - re  l l , . . . , I m :  i =  1 

disjoint 

l~ ~'(/,, k) 
l l , . . . , l m :  i=1  
disjoint 

(44) 

Based on (42) we can assert the existence of an expansion for the 
logarithm of Z~(t, k), and thus 

f(t)=exp(-2dt)7g=~_~ d dkl. . ,  dk a 
t L~c l g 

xexp[t f~176 (45) 

f~ (k )  = ~ vC(I1 ..... Ira) 1-I lira @(Ii, k) (46) 
l l , . . . , I m :  i t ~ oo 

left edge of U i  l i  = 0 

where 

and the other terms in the exponent of (45) are due to boundary effects and 
finite-t effects (i.e., from intervals which include one or two endpoints, 
respectively). Both f l  and f2 are uniformly bounded in k from (42). In 
addition, f l  has no t dependence, and f2 is bounded by O(e -~ for 
p = 2 ( d -  1) q/~. At this point in the calculations, the Ising model will have 
a similar result up to differences in the functions f ~ ,  f l ,  and f2. 

2.4. Analysis of the Expansion 

To get results about the spectrum of H we must make a change of 
variables in the integral in (45). If we let g(t) be the integral 

(2rOa f_~ dk~...f_~ dkaexp +f l (k)+f2( t ,k)  

we claim that the integral can be written as 

g(t) = exp( - tE) d#(E) 
- - o o  

(48) 



Spectrum of Spin-l /2 Models in Infinite-Volume Limit 397 

where dp is a measure on [ - M, oo) for 0 < M < Go to be chosen later [-the 
value of M will be at most 2d--see (45)]. To prove the existence of 
the proposed measure we will apply the Riesz-Markov theorem. Let X be 
the one-point compactification of I - M ,  oo). By verifying the hypotheses 
of the Riesz-Markov theorem for a set of functions whose closure is the set 
of all continuous functions on W, we show that the hypotheses hold for all 
continuous functions on 5~ and then conclude the existence of a unique 
measure d#. 

To the following set of functions we apply the Stone-Weierstrass 
theorem to show that its closure is the set of all continuous functions 
on X. Consider the set of functions in the subalgebra of CR(X) given by 

B = {  ciexp(-tiE)Jti>~O, c i ~ R , N ~ Z  + 
i = l  

(49) 

It is easy to verify that functions in B contain 1, and separate points in X. 
Therefore by the Stone-Weierstrass theorem B =  CR(~) (where the bar 
indicates the closure of the set). Now define the following functional on B, 
for b = Z i  ci exp( - tiE): 

~b(b) = ~b ( ~  Gexp( - t iE ) )  

de f 2 cig(gi) ( 5 0 )  

i 

One can easily check that the definition of ~b(b) is well defined for all b ~/~ 
[-and thus for all functions in CR(Y')]. The definition (50) implies the 
following: 

= ~i ci ~-olim ~ e x p ( - t i E )  f 
{( --f~v/z)-l([E,E+ ~))} 

x dkl ... dkaexp[fl(k)+fz(t i ,  k)] 

f 
oo 

ci e x p ( -  tiE) d~,,(E) (51) 
i oo 
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where in the second equality E ranges over the set { - M , - M + ~ ,  
- M + 2 ~ , . . . } .  It is easy to verify that, as defined above, d#, is an integra- 
tion measure for which #t(•) is uniformly bounded in t (recall the bounds 
on f l  and f ~ ) ,  and which gives the point at infinity zero mass. To show 
that the functional ~b(.) is linear is trivial, and to show that it is bounded 
is also easily done: 

I~(b)l ~< ciexp(-tiE) 

f 
o o  

~< !tbl l  co d#,(E) 
- - o o  

dv,(E) 

= const.  I lb l l  co (52) 

where the constant does not depend on t. From the last line in  (51) it is 
also clear that ~b(. ) is a positive functional. Therefore, by the Riesz-Markov 
theorem there is a unique Baire measure on Y" such that (48) holds true. 
We leave the determination of the support of dp (which will determine the 
value of M)  until later. 

Next we show that the measure in (48) has a continuous part. We 
define h(t) by 

(27t)a - ,  dkl . ."  - ,  dkd exp + f l ( k  

- (2~)d j_~ ~ dkd exp 

---- lira ~ e x p ( - t i E )  f 
~ 0  E 

{(--fQo/~C) - 1  ( [ E ,  E + ~))}  

x d k l . . ,  dka exp [ f l ( k ) ]  
--/T - - g  

a~2 foo e x p ( - t i E )  dfi(E) (53) 

The measure d/~ is continuous as long as foo(k) is not constant on any 
region of nonzero area. We will next show that this measure is equal to the 
measure d# on the E interval [ - M, p - 6 ) for some 6 which depends only 
on d and q, for which 0 < 6 < p for large enough 7- The bounds on f l  and 
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fa are l/l(k)l ~ca and l/2(t, k)l <~cRexp(-pt). Thus, asymptotically as 
/---.0(3, 

k' l Ig(t)-h(t)l <~(---2~)d ~ dk~ ... -~ dkdexp + f l ( k )  

x f2(t, k ) +  f2(t'2 k)-----~2 + "" 

<~c2exp(--pt) (--2~)df dkl "" dkd 

xexp l t f~  [1 +O(exp(-pt))]  (54) 

Now assuming that the remaining integral above does not grow faster than 
exp(6t) for some & < p, we have shown that the measures appearing in g(t) 
and h(t) are identical for energies in the interval I - M ,  p - & ) .  Therefore, 
if the measure d/~ is continuous on some subinterval of [ - M ,  p -  6), the 
measure d/~ is also continuous on that subinterval. 

In order to prove the claims before and after (54) we will first show 
that the integral in (54) has an asymptotic expansion which does not grow 
too fast as t increases. To do the integral for large t we will use the method 
of steepest descent, which requires that we investigate the dependence of 
(46) on k. In turn we must consider (41). The values of r for which ~( / ,  r) 
can be nonzero are restricted to even values of Ir I (where l'[ is the ll 
distance). The r = 0  terms in the sum (41) will have no k dependence, and 
can be taken out of the integral in (45). The largest (in absolute value) 
k-dependent terms in (41) will be those with Irl = 2 [recall the bound (39)]. 
Similarly, the largest terms in (46) have only one interval I of length r. 
Therefore, 

f~(k)=~ v),0)+ Y', exp(ik'r)~#([O,T),r)+O(exp(-2dq)) (55) 
r:[rl  = 2  

We must focus on the second term in the preceding sum, or more specifi- 
cally, the largest terms in q/([0, r), r) for ]rl =2.  There are basically two 
types of excitations which can appear when Irl = 2: either r lies entirely 
along the direction of a unit vector in A, or r is the sum of two orthogonal 
unit vectors. For  d =  2, Fig. 3 shows examples of these two types of excita- 
tions. Both types of excitations have identical, positive weights (which we 
will denote by G). We can then write the sum as 



400 Pokorny 

2 
r:lrl = 2 

exp(ik �9 r) q/( [-0, r), r) 

= 2G cos(2ki) + 
i 1 i < j = l  

= 2G cos(2ki)+ ~ (56) 
i = l  i < j = l  

Therefore the right-hand side of (53) is asymptotically (as t ~ oe) given by 

exp{~([0,  z), 0) t/z} exp(2Gd2t/r) 
d co 

x ~ f dkjexp{-t[ck2+O([k[g)J} (57) 
j = l  - c o  

where c is a positive number depending only upon d. And after a change 
of variables this becomes 

Ecos(k, + kj) + cos (k , -  kj)] } 

(2 cos k, cos kj ) l  

O'']exp(2 2 ) 
x 1-I exp ( - tE j )  2(c~.j~-737+ dE] (58) 

j = l  

Evaluating the integral above shows a leading-order t dependence of t -a/2. 
If we let 5 =  (q/([0, r), O)+2Gd2)/~ (which depends only on the param- 
eters d, ~/, and z), then 5 can be made less than p for large enough t/. 
Note that the continuity of the measure dfi near the origin has also been 
established since we have found an expression for fco(k) which is not 
constant near the origin. Thus the claims preceding and following (54) 
have been proved, and d# is therefore absolutely continuous at least for an 

Fig. 3. Examples  of the two types of exci ta t ions  for [r[ = 2 wi th  the largest  weights  ( d =  2). 
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interval near the origin. The location and size of this interval are deter- 
mined below. 

With only a little work we can find the width of the gap in this portion 
of the spectrum above the ground-state energy and show that the con- 
tinuous part of the spectrum has width of O(e). Because h(t) and g(t) have 
identical measures out to order 1 - 6  [recall that 6 ~ O(e "/z)], we may 
use h(t) rather than g(t) to investigate the measure within O(~) of 0. From 
(53) we find that the support of dfi is the image of the function -foo/z. 
Referring to (55) and (56), we find t h a t f ~  has its absolute maximum value 
at k = 0. Therefore the minimum value of E in the support of d~ (and also 
d#) is -foo(O)/z [and the value of M which was left undetermined above 
should be at least f~(0) /z] .  The width of the support of d/~ is found by 
identifying the minimum value offo~(k)/z. Again using the same two equa- 
tions, we find that the minimum is {q/([0, z), O)-2Gd2}/z, which is 0(6). 
Because the maximum is also 0(6), the support of d/~ has width of 0(6), 
which is O(e). The arguments at the beginning of this paragraph then allow 
us to conclude that the continuous part of the measure dp has a width 
of O(~). 

Lastly, we prove the analyticity of the gap in e. We have found that 
if we take the ground-state energy to be 0, then the lower edge of the 
continuous spectrum that we have found has energy 2d-fo~(O)/z. The 
definition offoo(k), (46), is an absolutely convergent series, and is therefore 
analytic in e if each of its terms is an analytic function of e. We will there- 
fore show that ~ ( / ,  k) is an analytic function of e. Tracing back definitions, 
we find that it is sufficient to show that the weights of polymers are analytic 
functions of e. Since the weights of polymers were simply products whose 
factors were restricted to e/N and exp( - 1/N), the weights of polymers are 
indeed analytic functions of e. 

3. C O N C L U S I O N S  

Using the observable a~, we have shown that the spectrum of the 
infinite-volume ground states of the two Hamiltonians considered here 
contain a continuous component directly above the mass gap. We must 
note that to get the full spectrum we would have to carry out our calcula- 
tions for all observables and all t. For  large values of t one can concieve 
how the calculation would fare using an observable such as a~a,  ~. For  this 
observable, there are several possible conformations of the tubes which are 
of lowest energy. If the ll distance between the two sites at time 0 is odd, 
the two tubes may disappear altogether in the interior; as soon as the two 
tubes are adjacent to each other, the a+a + (or (r i ~j ) operator may 
end both tubes. On the other hand, if the sites at time 0 are an even Ii 
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distance apart, then the two tubes will never touch. Although this "two- 
site" observable is the next simplest observable to consider, it introduces 
new difficulties. We must be careful since there is the potential for the 
appearance of two-magnon bound states/11) If bound states occur, there 
will be a discrete component  to the spectrum. 

We can also consider how our calculation would proceed using 
observables which are products of ex operators for more than two sites. 
The essential difference in these "multiple-site" observables from the two- 
or one-site observables is that there will be many possible conformations of 
tubes of lowest energy, and the different conformations will occur with 
different entropies. For  example, in d = 2 with a three-site observable, in a 
view perpendicular to the • axis, the three sites can lie in an ' T '  (i.e., 
collinear) or an "L" (i.e., on the vertices of a right triangle) shape. The 
"I" conformation can appear  in two distinct orientations, while the "L" 
conformation can appear  in four distinct orientations. All of the "I" and 
"L" conformations will have the same energy, but due to entropy effects, 
will have different free energies. This free energy difference makes the 
derivation of the expansion fail. 

All of the foregoing discussion shows that the spectrum in the ground 
state will still have many more features than we have been able to reveal 
using our expansion technique. However, the features of the spectrum 
which we have found using the single-site observable are nonetheless valid. 
While we cannot rule out the possibility of discrete or singular components 
of the spectrum, we can conclude that a continuous band near the ground 
state is a feature of the spectrum of both the spin-l/2 anisotropic 
Heisenberg model in dimensions greater than or equal to two, and the 
Ising model in a strong transverse field in dimensions greater than or equal 
to one. 
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